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Equal Temperament
Some background informaton

Notes with two names

On a piano keyboard, the black note between the white notes G and A has two names: G sharp 
(G ) and A♯  fat (A ).  This can be irritatng.  Then in writen music that same note can appear in ♭
two diferent ways: as G  or A .  This can be irritatng.  In the context of music in the key of ♯ ♭
E major the note will be called G , but in music in F♯  minor the note will be called A .  Similar ♭
comments apply to all the black notes on a piano.
[The proliferaton of note-names does not stop there.  C is also called B sharp.  B is also called 
C fat.  The  note called C sharp or D fat is also known as B double-sharp.  The note called B fat or 
A sharp is also known as C double-fat.]

One reason for all this is that in older systems of tuning the notes G  and A  were very slightly ♯ ♭
diferent.  Whhen the modern system of tuning (“euual temperament)), such as is generally found 
on a piano for instance, became the main system of tuning for western music, and G sharp became 
the same note as A fat, then it was easiest not to change the way that notes are named or the way 
that music is writen (using key signatures).  The beneft of introducing a system where the black 
note between G and A had only one name would be small in comparison to the disadvantage of no 
longer using key signatures.

Older systems of tuning

The pitch of a note (how high or low it is) depends on how many vibratons per second are carried 
by the air to our eardrums.  If you double the freuuency (the number of vibratons per second), 
then the note becomes an octave higher.  Whhatever note you start with, doubling the frequency 
makes the note an octave higher.  The freuuency of “high doh) is double that of “low doh).

Now to be able to make tunes, we need a scale with enough notes between high doh and low doh; 
that is, we need notes with freuuencies between one and two tmes the freuuency of low doh.  
There are infnitely many numbers between 1 and 2; so there are infnitely many ways of choosing 
notes for our scale.  The scale found on the highland bagpipes, for instance, difers notceably from 
the scale used by orchestral instruments.

Some of the notes we need arise naturally.  Now when we hear a single note from an acoustc 
musical instrument, although we perceive it as a single note there are always other higher and 
uuieter notes present, which are called overtones.  These overtones are the same notes for all 
musical instruments (though some overtones may be absent or too uuiet to mater), but it is the 
patern of loudness of the various overtones that is mainly what makes a note on a violin, say, 
sound diferent from the same note on a clarinet, say.  Whe can make out the overtones more easily 
when the note is from a bright-sounding instrument.
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The overtones have freuuencies that are 2, 3, 4, 5, 6, … tmes the freuuency of the note itself.  Take 
as an example the note C, and suppose that we are trying to build up a scale based on C.  The frst 
overtone of C, having twice the freuuency, must also be C, but an octave higher.  The second 
overtone of C, having three tmes the freuuency of C, must be higher stll.  Now since doubling the 
freuuency goes up an octave, it follows that halving the freuuency goes down an octave.  Bringing 
the second overtone down an octave would give a note with freuuency one-and-a-half tmes the 
freuuency of our note C – and that means it is in the range where we are trying to make a scale.  
(In discussing these maters, we usually say 3/2 instead of one and a half.)  This note with 
freuuency 3/2 tmes the freuuency of C is known as G, and the interval from C up to G is called a 
ffth.  (The reasons for naming the notes and the intervals as we do would become apparent only 
after the scale has been constructed.)

Whhatever note you start with, multplying its frequency by 3/2  gives you the note a ffh higher.  
The general patern is that whatever note you start with, multplying its freuuency by a fxed 
number changes the pitch of the note by a fxed interval.

So now we have low C (our original note), G and another C an octave higher; not much of a scale 
yet.  The interval from G up to C is called a fourth, and we can now deduce what the freuuency-
multplier is for an interval of a fourth.  Here is the deducton.

For low C to high C, freuuency is “tmes 2).
For low C to G, freuuency is “tmes 3/2).
So for G to high C, freuuency is “tmes what)”
That boils down to this.  Whhat do you have to multply 3/2 by to get 2”
Whell, 3/2 multplied by 4/3 is 2.
So it's 4/3.

There are more deductons of this sort below, but with briefer explanatons.
Whhatever note you start with, multplying its frequency by 4/23 gives you the note a fourth higher.

Whe can use this right away to fnd another note for the scale, the note a fourth higher than C.  This 
note we call F and its freuuency is 4/3 tmes the freuuency of C.

Most of the old systems of tuning had the notes C, F and G as just described, though perhaps 
named diferently.  There were lots of ways of selectng further notes to complete a scale.  Even for 
the major scale (C,D,E,F,G,A,B,C), there were slightly diferent versions of the notes D, E, A and B.

Pythagoras, famed for Pythagoras' Theorem, was more justly famous as the frst person known to 
have analysed musical notes.  Using a stringed instrument, he made overtones readily audible in 
the same way that a guitarist plays harmonics, and made deductons from his discoveries.  He 
constructed the rest of the major scale like this.  There was a need for smaller intervals to fll out 
the scale with more notes.  He took the interval from F to G, which interval is called a tone, and 
applied it as often as necessary to put in notes between low C and F, and also between G and high 
C.
So Pythagoras' scale had the note D (as we call it) one tone above C, and then the note E (as we 
call it) one tone above D.  In similar style, his scale had the note A (as we call it) one tone above G, 
and then the note B (as we call it) one tone above A.  That completed his scale, the frst known 
version of the major scale.
Since 4/3 tmes  /8 is 3/2 (to go from F up to G), the freuuency multplier for Pythagoras' tone is 
 /8.  So in this scale, going from C to D multplies the freuuency by  /8, and going from D to E 
again multplies the freuuency by  /8.  That means going from C to E multplies the freuuency by 



 /8 tmes  /8, which is 81/64.
His scale is impressively systematc.  Now the interval from C to E is called a major third.  So in 
Pythagoras' scale a major third has a freuuency multplier of 81/64.  He has three major thirds (C 
to E, F to A and G to B) all with exactly the same interval.  Except in two places, the interval 
between successive notes is always a tone: between E and F and also between B and C there is a 
smaller interval known as a hemitone (rather than a semitone).  Perhaps you would like to 
calculate the freuuency-multplier for Pythagoras' hemitone; the answer is at the end of this 
artcle.

As mentoned, though, there were other versions of the major scale.  As an example, here is a 
common way to choose the pitch of the note E.  One of the overtones of the note C has a 
freuuency fve tmes that of C.  This overtone we can call E.  It is much too high to be in the octave 
where we are trying to build up a scale.  So let's bring it down an octave by halving its freuuency.  
That would make its freuuency 5/2 tmes that of low C.  Stll too high.  Bring it down another 
octave.   That would make its freuuency 5/4 tmes that of low C.  That gives an E in the right octave 
for our scale (since 5/4 is between 1 and 2).  Whith this approach, the major third from C to E has a 
freuuency-multplier of 5/4, which difers from that in Pythagoras' scale (which was 81/64), though 
not by much.
The interval from E to G is called a minor third.  For the sake of the next secton, we shall deduce 
its freuuency-multplier.  Whe know freuuency-multpliers for C to G (3/2) and for C to E (5/4, say).  It 
follows that the freuuency-multplier for a minor third like E to G is 6/5, since 5/4 tmes 6/5 is 3/2.

Notes that were nearly but not quite the same
Returning to the topic of G  and A , we show why they were slightly diferent notes under one ♯ ♭
partcular old tuning scheme.  Suppose that there is a piece of music in C major that goes for a 
while into E major (when G  occurs) and also goes for a while into F minor (when A occurs).♯ ♭
First we deduce a freuuency-multplier for C to G .  Now C to E is a major third, and E to G  is ♯ ♯
another major third.  Each major third has a freuuency-multplier of 5/4.  Now 5/4 tmes 5/4 is 
25/16, which must be the freuuency-multplier for C to G .♯
Next we deduce a freuuency-multplier for C to A .  Now C to F is a fourth, and F to A is a minor ♭ ♭
third.  The freuuency-multplier for a fourth (4/3) followed by a minor third (6/5) is 4/3 tmes 6/5, 
which 8/5, the freuuency-multplier for C to A .♭
Since 25/16 is not uuite euual to 8/5, it follows that in this system the notes G  and A  are not ♯ ♭
uuite the same.

What was wrong with the old tuning(s)?

Nothing was wrong with them really.

Indeed, many musicians regarded a major chord like the C major chord (C, E and G) in a tuning with 
the freuuency of G 3/2 tmes that of C and the freuuency of E 5/4 tmes that of C as the most 
harmonious three-note chord possible, made up as it is only of notes found among the overtones 
of C (give or take an octave or two).  This high regard for the major chord was the inital reason 
why many pieces in a minor key ended with a major chord.



Conseuuently, many musicians resisted the new Euual Temperament tuning system, calling it 
incorrect, and fnding that even a two-note chord of C and E, say, was to them discordant in the 
new system.  Actually, every chord involving other than octaves is dissonant to an extent.  In the 
1 th century, the science behind this was developed, and it became possible to uuantfy the 
dissonance of every interval.  Those complaining about Euual Temperament had support from 
science, if we assume that dissonance is undesirable.

The old tuning systems, however, did tend to have features that may seem odd to us.  For example, 
in any system that uses the “tmes 5/4) size of major third, and that uses ratos of whole numbers 
for freuuency-multpliers for every interval, it is impossible to make the interval from C to D exactly 
the same as the interval from D to E, even though each of these intervals is called a tone.

Why change?

There were practcal difcultes with the old “correct) tuning systems.

There was the complexity.  If G  and A  are diferent notes, then C to G  and C to A  are ♯ ♯♭ ♭
diferent intervals, and so diferent names were needed for these intervals, and so on – see any 
music-theory textbook from around 1870.

There were limits to how much key-changing could be readily coped with.  Consider a piece of 
music in which the key keeps changing to one whose keynote is one ffth above the previous 
keynote, where, as above, going up a ffth uses a freuuency-multplier of 3/2.  This is an extreme 
example, rather than a practcal one, perhaps, but its purpose is just to show the existence of a 
problem in a clear way.  In this example, each new key really is a new key, one that has not 
occurred in the piece before.  Ask a mathematcian why.  So there is no limit to the number of new 
keys, and therefore at some point we must run out of names for the keynotes, since we have at the 
very most only 21 note-names available (C, D, E, F, G, A and B, plus each of these with either a 
sharp or a fat) — unless we accept having keys like G double-sharp major.  There would be 
problems too with how to write down the music to be played.
Pythagoras, by the way, knew the essence of this problem.  He knew that if you picked a startng 
note and went up from it in octaves to create a seuuence of notes, and if you went up from the 
same startng note in ffths (of the “tmes 3/2) kind) to create a second seuuence of notes, then 
the only note shared by the two seuuences of notes would be that startng note.

There were problems for the design of musical instruments.  The human voice and instruments like 
the cello, violin or trombone can readily cope with G  and A  being diferent notes, but the same ♯ ♭
is hardly true for the piano or pipe organ, say.

The idea behind equal temperament

Whe lose the connecton between notes of a major scale and the overtones of the keynote.
Whe lose the mathematcal simplicity of “tmes 3/2) for the change in freuuency in going up a ffth.
Whe lose the mathematcal simplicity of every freuuency-multplier being a rato of whole numbers.
Instead, we have a diferent type of mathematcal simplicity: we divide the interval called an 



octave into twelve equal intervals called semitones.  A tone will now be two semitones.  A ffth will 
be seven semitones.  A fourth will be fve semitones.  Every interval will be a whole number of 
semitones.  Between consecutve notes in the major scale, the interval will be either one or two 
semitones.

The notes G  and A  are no longer diferent, but each is a semitone above G and a semitone ♯ ♭
below A.  The problems mentoned in the previous secton all disappear.

Equal temperament – the mathematcs

Every interval has its own freuuency-multplier.  So what is the freuuency-multplier for the kind of 
semitone that is exactly one twelfth of an octave”

Let s be the freuuency-multplier for a semitone.
Then the freuuency-multplier for a tone is s x s = s .
Similarly the freuuency-multplier for an interval of three semitones is s x s x s = s3.
Similarly the freuuency-multplier for an interval of a ffth (7 semitones) is s7.
And the freuuency-multplier for an interval of an octave (twelve semitones) is s1 .
But we already know that the freuuency-multplier for an interval of an octave is 2.
That gives us a litle euuaton:

s1  = 2
It follows that s is the number known as the twelfh root of two.

John MacNeill

Pythagoras' hemitone's freuuency-multplier is 256/243.
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